Archive for the ‘Technical’ Category

Lucene/Solr London Meetup – BioSolr and Query Deep Dive

This week we held another Lucene/Solr London User Group event, kindly hosted by Barclays at their funky Escalator space in Whitechapel. First to talk were two colleagues of mine, Matt Pearce and Tom Winch, on the BioSolr project: funded by the BBSRC, this is an opportunity for us to work with bioinformaticians at the European Bioinformatics Institute on improving search facilities for systems including the Protein Databank in Europe (PDBe). Tom spoke about how we’ve added features to Solr for autocompleting searches using facets and a new way of integrating external similarity systems with Solr searches – in this case an EBI system that works with protein data – which we’ve named XJoin. Matt then spoke about various ways to index ontology data and how we’re hoping to work towards a standard method for working with ontologies using Solr. The code we’ve developed so far is available in our GitHub repository and the slides are available here.

Next was Upayavira of Odoko Ltd., expert Solr trainer and Apache Foundation member, with an engaging talk about Solr queries. Amongst other things he showed us some clever ways to parameterize queries so that a Solr endpoint can be customized for a particular purpose and how to combine different query parsers. His slides are available here.

Thanks all our speakers, to Barclays for providing the venue and for some very tasty food and to all who attended. We’re hoping the next event will be in the first week of June and will feature talks on measuring and improving relevancy with Solr.

Elastic London User Group Meetup – scaling with Kafka and Cassandra

The Elastic London User Group Meetup this week was slightly unusual in that the talks focussed not so much on Elasticsearch but rather on how to scale the systems around it using other technologies. First up was Paul Stack with an amusing description of how he had worked on scaling the logging infrastructure for a major restaurant booking website, to cope with hundreds of millions of messages a day across up to 6 datacentres. Moving from an original architecture based on SQL and ASP.NET, they started by using Redis as a queue and Logstash to feed the logs to Elasticsearch. Further instances of Logstash were added to glue other parts of the system together but Redis proved unable to handle this volume of data reliably and a new architecture was developed based on Apache Kafka, a highly scalable message passing platform originally built at LinkedIn. Kafka proved very good at retaining data even under fault conditions. He continued with a description of how the Kafka architecture was further modified (not entirely successfully) and how monitoring systems based on Nagios and Graphite were developed for both the Kafka and Elasticsearch nodes (with the infamous split brain problem being one condition to be watched for). Although the project had its problems, the system did manage to cope with 840 million messages one Valentine’s day, which is impressive. Paul concluded that although scaling to this level is undeniably hard, Kafka was a good technology choice. Some of his software is available as open source.

Next, Jamie Turner of PostcodeAnywhere described in general terms how they had used Apache Cassandra and Apache Spark to build a scalable architecture for logging interactions with their service, so they could learn about and improve customer experiences. They explored many different options for their database, including MySQL and MongoDB (regarding Mongo, Jamie raised a laugh with ‘bless them, they do try’) before settling on Cassandra which does seem to be a popular choice for a rock-solid distributed database. As PostcodeAnywhere are a Windows house, the availability and performance of .Net compatible clients was key and luckily they have had a good experience with the NEST client for Elasticsearch. Although light on technical detail, Jamie did mention how they use Markov chains to model customer experiences.

After a short break for snacks and beer we returned for a Q&A with Elastic team members: one interesting announcement was that there will be a Elastic(on) in Europe some time this year (if anyone from the Elastic team is reading this please try and avoid a clash with Enterprise Search Europe on October 20th/21st!). Thanks as ever to Yann Cluchey for organising the event and to open source recruiters eSynergySolutions for sponsoring the venue and refreshments.

Free file filters, search & taxonomy tools from our old Googlecode repository

Google’s GoogleCode service is closing down, in case you hadn’t heard, and I’ve just started the process of moving everything over to our Github account. This prompted me to take a look at what’s there and there’s a surprising amount of open source code I’d forgotten about. So, here’s a quick rundown of the useful tools, examples and crazy ideas we’ve built over the years – perhaps you’ll find some of it useful – please do bear in mind however that we’re not officially supporting most of it!

  • Flax Basic is a simple enterprise search application built using Python and the Xapian search library. You can install this on your own Unix or Windows system to index Microsoft Office, PDF, RTF and HTML files and it provides a simple web application to search the contents of the files. Although the UI is very basic, it proved surprisingly popular among small companies who don’t have the budget for a ‘grown up’ search system.
  • Clade is a proof-of-concept classification system with a built-in taxonomy editor. Each node in the taxonomy is defined by a collection of words: as a document is ingested, if it contains these words then it is attached to the node. We’ve written about Clade previously. Again this is a basic tool but has proved popular and we hope one day to extend and improve it.
  • Flax Filters are a set of Python programs for extracting plain text from a number of common file formats – which is useful for indexing these files for search. The filters use a number of external programs (such as Open Office in ‘headless’ mode) to extract the data.
  • The Lucene Redis Codec is a (slightly crazy) experiment in how the Lucene search engine could store indexed data not on disk, but in a database – our intention was to see if frequently-updated data could be changed without Lucene noticing. Here’s what we wrote at the time.
  • There’s also a tool for removing fields from a Lucene index, a prototype web service interface with a JSON API for the Xapian search engine and an early version of a searchable database for historians, but to be honest these are all pre-alpha and didn’t get much further.

If you like any of these tools feel free to explore them further – but remember your hard hat and archeology tools!

Tags: , , ,

Posted in Technical

March 19th, 2015

No Comments »

Lucene/Solr London User Group – Alfresco & Datastax

We had another London user group Meetup last week, hosted by Reed.co.uk who also provided some tasty pizza – eaten under the ‘Love Mondays’ sign from their adverts, which now lives in their boardroom! A few new faces this time and a couple of great talks from two companies who have incorporated Solr into their platforms.

First up was Andy Hind, a founding developer of document management company Alfresco, who told us all about how they originally based their search capability on Lucene 2.4, then moved to Solr 4.4 and most recently version 4.9.1. Using Solr they have implemented often complex security requirements (originally using a PostFilter as Erik Hatcher describes and more recently in the query itself), structured queries (using Phrase and SpanQueries) and their own domain specific query language (DSL) – they can support SQL-like, Lucene and Google-like queries by passing them through parsers based on ANTLR to be served either by the search engine or whatever relational database Alfresco is using. The move to a recent version of Solr has allowed the most recent release of Alfresco to support various modern search features (facets, spelling suggestions etc.) but Andy did mention that so far they are not using SolrCloud for scaling, preferring to manage this themselves.

Next up was Sergio Bossa of Datastax, talking about how their Datastax Enterprise (DSE) product incorporates Solr searching within an Apache Cassandra cluster. Sergio has previously spoken at our Cambridge search meetup on a very similar subject, so I won’t repeat myself here, but the key point is that Solr lives directly on top of the Cassandra cluster, so you don’t have to worry about it at all – search features are directly available from the Cassandra APIs. Like Alfresco, this is an alternative to SolrCloud (assuming you also need a NoSQL database of course!).

Thanks again to Alex Rice for hosting the Meetup, to both our speakers and to all who came – we’ll return soon! In the meantime you may want to check out a few events coming later this year: Berlin Buzzwords, ApacheCon Europe and Lucene/Solr Revolution.

Tags: , , , ,

Posted in Technical, events

February 16th, 2015

No Comments »

Elasticsearch London Meetup: Templates, easy log search & lead generation

After a long day at a Real Time Analytics event (of which more later) I dropped into the Elasticsearch London User Group, hosted by Red Badger and provided with a ridiculously huge amount of pizza (I have a theory that you’ll be able to spot an Elasticsearch developer in a few years by the size of their pizza-filled belly).

First up was Reuben Sutton of Artirix, describing how his team had moved away from the Elasticsearch Ruby libraries (which can be very slow, mainly due to the time taken to decode/encode data as JSON) towards the relatively new Mustache templating framework. This has allowed them to remove anything complex to do with search from their UI code, although they have had some trouble with Mustache’s support for partial templates. They found documentation was somewhat lacking, but they have contributed some improvements to this.

Next was David Laing of CityIndex describing Logsearch, a powerful way to spin up clusters of ELK (Elasticsearch+Logstash+Kibana) servers for log analysis. Based on the BOSH toolchain and open sourced, this allows CityIndex to create clusters in minutes for handling large amounts of data (they are currently processing 50GB of logs every day). David showed how the system is resilient to server failure and will automatically ‘resurrect’ failed nodes, and interestingly how this enables them to use Amazon spot pricing at around a tenth of the cost of the more stable AWS offerings. I asked how this powerful system might be used in the general case of Elasticsearch cluster management but David said it is targetted at log processing – but of course according to some everything will soon be a log anyway!

The last talk was by Alex Mitchell and Francois Bouet of Growth Intelligence who provide lead generation services. They explained how they have used Elasticsearch at several points in their data flow – as a data store for the web pages they crawl (storing these in both raw and processed form using multi-fields), for feature generation using the term vector API and to encode simple business rules for particular clients – as well as to power the search features of their website, of course.

A short Q&A with some of the Elasticsearch team followed: we heard that the new Shield security plugin has had some third-party testing (the details of which I suggested are published if possible) and a preview of what might appear in the 2.0 release – further improvements to the aggregrations features including derivatives and anomaly detection sound very useful. A swift drink and natter about the world of search with Mark Harwood and it was time to get the train home. Thanks to all the speakers and of course Yann for organising as ever – see you next time!

Solr Superclusters for improved federated search

As part of our BioSolr project, we’ve been discussing how best to create a federated search over several Apache Solr instances. In this case various research institutions across the world are annotating data objects representing proteins and it would be useful to search not just the original protein data, but what others have added to the body of knowledge. If an institution wants to use the annotations, the usual approach is to download the extra data regularly and add it into a local Solr index.

Luckily Solr is widely used in the bioinformatics community so we have commonality in the query API. The question is would it be possible to use some of the distributed querying capabilities of SolrCloud to search not just the shards of a single index, but a group of Solr/SolrCloud indices – a supercluster.

This is a bit like a standard federated search, where queries are farmed out to various disparate search engines and the results then combined and displayed in some fashion. However, since we are sharing a single technology, powerful features such as result grouping would be possible.

For this to work at all, there would need to be some agreed standard between the various Solr systems: a globally unique record identifier for example (possibly implemented with a prefix unique to each institution). Any data that was required for result grouping would have to share a schema across the entire supercluster – let’s call this the primary schema – but basic searching and faceting could still be carried out over data with a differing, secondary schema. Solr dynamic fields might be useful for this secondary schema.

Luckily, research institutions are used to working as part of a consortium, and one of the conditions for joining would be agreeing to some common standards. A single Solr query API would then be available to all members of the consortium, to search not just their own data but everything available from their partners, without the slow and error-prone process of copying the data for local indexing.

We’re currently evaluating the feasibility of this idea and would welcome input from others – let us know what you think in the comments!

Tags: , , ,

Posted in Technical

January 20th, 2015

1 Comment »

Elasticsearch London user group – The Guardian & Orchestrate test the limits

Last week I popped into the Elasticsearch London meetup, hosted this time by The Guardian newspaper. Interestingly, the overall theme of this event was not just what the (very capable and flexible) Elasticsearch software is capable of, but also how things can go wrong and what to do about it.

Jenny Sivapalan and Mariot Chauvin from the Guardian’s technical team described how Elasticsearch powers the Content API, used not just for the newspaper’s own website but internally and by third party applications. Originally this was built on Apache Solr (I heard about this the last time I attended a search meetup at the Guardian) but this system was proving difficult to scale elastically, taking a few minutes before new content was available and around an hour to add a new server. Instead of upgrading to SolrCloud (which probably would have solved some of these issues) the team decided to move to Elasticsearch with targets of less than 5 seconds for new content to become live and generally a quicker response to traffic peaks. The team were honest about what had gone wrong during this process: oversharding led to problems caused by Java garbage collection, some of the characteristics of the Amazon cloud hosting used (in particular, unexpected server shutdowns for maintenance) required significant tweaking of the Elasticsearch startup process and they were keen to stress that scripting must be disabled unless you want your search servers to be an easy target for hackers. Although Elasticsearch promises that version upgrades can usually be done on a live cluster, the Guardian team found this unreliable in a majority of cases. Their eventual solution for version upgrades and even more simple configuration changes was to spin up an entirely new cluster of servers, switch over by changing DNS settings and then to turn off the old cluster. They have achieved their performance targets though, with around 375 requests/second supported and less than 15 minutes for a failed node to recover.

After a brief presentation from Colin Goodheart-Smithe of Elasticsearch (the company) on scripted aggregrations – a clever way to gather statistics, but possibly rather fiddly to debug – we moved on to Ian Plosker of Orchestrate.io, who provide a ‘database as a service’ backed by HBase, Elasticsearch and other technologies, and his presentation on Schemalessness Gone Wrong. Elasticsearch allows you submit data for indexing without pre-defining a schema – but Ian demonstrated how this feature isn’t very reliable in practice and how his team had worked around it but creating a ‘tuplewise transform’, restructuring data into pairs of ‘field name, field value’ before indexing with Elasticsearch. Ian was questioned on how this might affect term statistics and thus relevance metrics (which it will) but replied that this probably won’t matter – it won’t for most situations I expect, but it’s something to be aware of. There’s much more on this at Orchestrate’s own blog.

We finished up with the usual Q&A which this time featured some hard questions for the Elasticsearch team to answer – for example why they have rolled their own distributed configuration system rather than used the proven Zookeeper. I asked what’s going to happen to the easily embeddable Kibana 3 now Kibana 4 has its own web application (the answer being that it will probably not be developed further) and also about the licensing and availability of their upcoming Shield security plugin for Elasticsearch. Interestingly this won’t be something you can buy as a product, rather it will only be available to support customers on the Gold and Platinum support subscriptions. It’s clear that although Elasticsearch the search engine should remain open source, we’re increasingly going to see parts of its ecosystem that aren’t – users should be aware of this, and that the future of the platform will very much depend on the business direction of Elasticsearch the company, who also centrally control the content of the open source releases (in contrast to Solr which is managed by the Apache Foundation).

Elasticsearch meetups will be more frequent next year – thanks Yann Cluchey for organising and to all the speakers and the Elasticsearch team, see you again soon I hope.

Comparing Solr and Elasticsearch – here’s the code we used

A couple of weeks ago we presented the initial results of a performance study between Apache Solr and Elasticsearch, carried out by my colleague Tom Mortimer. Over the last few years we’ve tested both engines for client projects and noticed some significant performance differences, which we thought deserved fuller investigation.

Although Flax is partnered with Solr-powered Lucidworks we remain completely independent and have no particular preference for either Solr or Elasticsearch – as Tom says in his slides they’re ‘both awesome’. We’re also not interested in scoring points for or against either engine or the various commercial companies that are support their development; we’re actively using both in client projects with great success. As it turned out, the results of the study showed that performance was broadly comparable, although Solr performed slightly better in filtered searches and seemed to support a much higher maximum queries per second.

We’d like to continue this work, but client projects will be taking a higher priority, so in the hope that others get involved both to verify our results and take the comparison further we’re sharing the code we used as open source. It would also be rather nice if this led to further performance tuning of both engines.

If you’re interested in other comparisons between Solr and Elasticsearch, here are some further links to try.

Do let us know you get on, what you discover and how we might do things better!

Searching & monitoring the Unified Log

This week I dropped into the Unified Log Meetup held at the rather hard to find offices of Just Eat (luckily there was some pizza left). The Unified Log movement is interesting and there’s a forthcoming book on the subject from Snowplow’s Alex Dean – the short version is this is all about massive scale logging of everything a business does in a resilient fashion and the eventual insights one might gain from this data. We’re considering streams of data rather than silos or repositories we usually index here, and I was interested to see how search technology might fit into the mix.

The first talk by Ian Meyers from AWS was about Amazon Kinesis, a hosted platform for durable storage of stream data. Kinesis focuses on durability and massive volume – 1 MB/sec was mentioned as a common input rate, and data is stored across multiple availability zones. The price of this durability is latency (from a HTTP PUT to the associated GET might be as much as three seconds) but you can be pretty sure that your data isn’t going anywhere unexpectedly. Kinesis also allows processing on the data stream and output to more permanent storage such as Amazon S3, or Elasticsearch for indexing. The analytics options allow for counting, bucketing and some filtering using regular expressions, for real-time stream analysis and dashboarding, but nothing particularly advanced from a search point of view.

Next up was Martin Kleppman (taking a sabbatical from LinkedIn and also writing a book) to talk about some open source options for stream handling and processing, Apache Kafka and Apache Samza. Martin’s slides described how LinkedIn handles 7-8 million messages a second using Kafka, which can be thought of an append-only file – to get data out again, you simply start reading from a particular place in the file, with all the reliable storage done for you under the hood. It’s a much simpler system than RabbitMQ which we’ve used on client projects at Flax in the past.

Martin explored how Samza can be used as a stream processing layer on top of Kafka, and even how oft-used databases can be moved into local storage within a Samza process. Interestingly, he described how a database can be expressed simply as a change log, with Kafka’s clever log compaction algorithms making this an efficient way to represent it. He then moved on to describe a prototype integration with our Luwak stored query library, allowing for full-text search within a stream, with the stored queries and matches themselves being of course just more Kafka streams.

It’s going to be interesting to see how this concept develops: the Unified Log movement and stream processing world in general seems to lack this kind of advanced text matching capability, and we’ve already developed Luwak as a highly scalable solution for some of our clients who may need to apply a million stored queries to a million new stories a day. The volumes discussed at the Meetup are a magnitude beyond that of course but we’re pretty confident Luwak and Samza can scale. Watch this space!

A new Meetup for Lucene & Solr

Last Friday we held the first Meetup for a new Apache Lucene/Solr User Group we’ve recently created (there’s a very popular one for Elasticsearch so it seemed only fair Solr had its own). My co-organiser Ramkumar Aiyengar of Bloomberg provided the venue – Bloomberg’s huge and very well-appointed presentation space in their headquarters building off Finsbury Square, which impressed attendees. As this was the first event we weren’t expecting huge numbers but among the 25 or so attending were glad to see some from Flax clients including News UK, Alfresco and Reed.co.uk.

Shalin Mangar, Lucene/Solr committer and SolrCloud expert started us off with a Deep Dive into some of the recent work performed on testing resilience against network failures. Inspired by this post about how Elasticsearch may be subject to data loss under certain conditions (and to be fair I know the Elasticsearch team are working on this), Shalin and his colleagues simulated a number of scary-sounding network fault conditions and tested how well SolrCloud coped – the conclusion being that it does rather well, with the Consistency part of the CAP theorem covered. You can download the Jepsen-based code used for these tests from Shalin’s employer Lucidworks own repository. It’s great to see effort being put into these kind of tests as reliable scalability is a key requirement these days.

I was up next to talk briefly about a recent study we’ve been doing into a performance comparison between Solr and Elasticsearch. We’ll be blogging about this in more detail soon, but as you can see from my colleague Tom Mortimer’s slides there aren’t many differences, although Solr does seem to be able to support around three times the number of queries per second. We’re very grateful to BigStep (who offer some blazingly fast hosting for Elasticsearch and other platforms) for assisting with the study over the last few weeks – and we’re going to continue with the work, and publish our code very soon so others can contribute and/or verify our findings.

Next I repeated my talk from Enterprise Search and Discovery on our work with media monitoring companies on scalable ‘inverted’ search – this is when one has a large number of stored queries to apply to a stream of incoming documents. Included in the presentation was a case study based on our work for Infomedia, a large Scandinavian media analysis company, where we have replaced Autonomy IDOL and Verity with a more scalable open source solution. As you might expect the new system is based on Apache Lucene/Solr and our Luwak library.

Thanks to Shalin for speaking and all who came – we hope to run another event soon, do let us know if you have a talk you would like to give, can offer sponsorship and/or a venue.