Comparing Solr and Elasticsearch – here's the code we used

A couple of weeks ago we presented the initial results of a performance study between Apache Solr and Elasticsearch, carried out by my colleague Tom Mortimer. Over the last few years we’ve tested both engines for client projects and noticed some significant performance differences, which we thought deserved fuller investigation.

Although Flax is partnered with Solr-powered Lucidworks we remain completely independent and have no particular preference for either Solr or Elasticsearch – as Tom says in his slides they’re ‘both awesome’. We’re also not interested in scoring points for or against either engine or the various commercial companies that are support their development; we’re actively using both in client projects with great success. As it turned out, the results of the study showed that performance was broadly comparable, although Solr performed slightly better in filtered searches and seemed to support a much higher maximum queries per second.

We’d like to continue this work, but client projects will be taking a higher priority, so in the hope that others get involved both to verify our results and take the comparison further we’re sharing the code we used as open source. It would also be rather nice if this led to further performance tuning of both engines.

If you’re interested in other comparisons between Solr and Elasticsearch, here are some further links to try.

Do let us know you get on, what you discover and how we might do things better!

Share this postShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on RedditEmail this to someone

Leave a Reply

Your email address will not be published. Required fields are marked *